Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.20.440593

ABSTRACT

Surveillance tools to estimate infection rates in young populations are essential to guide recommendations for school reopening and management during viral epidemics. Ideally, field-deployable non-invasive, sensitive techniques are required to detect low viral load exposures among asymptomatic children. We determined SARS-CoV-2 antibody conversion by high-throughput Luminex assays in saliva samples collected weekly in 1,509 children and 396 adults in 22 Summer schools and 2 pre-schools in 27 venues in Barcelona, Spain, from June 29th to July 31st 2020, between the first and second COVID-19 pandemic waves. Saliva antibody conversion defined as [≥]4-fold increase in IgM, IgA and/or IgG levels to SARS-CoV-2 antigens between two visits over a 5-week period was 3.22% (49/1518), or 2.36% if accounting for potentially cross-reactive antibodies, six times higher than the cumulative infection rate (0.53%) by weekly saliva RT-PCR screening. IgG conversion was higher in adults (2.94%, 11/374) than children (1.31%, 15/1144) (p=0.035), IgG and IgA levels moderately increased with age, and antibodies were higher in females. Most antibody converters increased both IgG and IgA antibodies but some augmented either IgG or IgA, with a faster decay over time for IgA than IgG. Nucleocapsid rather than spike was the main antigen target. Anti-spike antibodies were significantly higher in individuals not reporting symptoms than symptomatic individuals, suggesting a protective role against COVID-19. To conclude, saliva antibody profiling including three isotypes and multiplexing antigens is a useful and more user-friendly tool for screening pediatric populations to determine SARS-CoV-2 exposure and guide public health policies during pandemics.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.22.21254120

ABSTRACT

COVID-19 affects children to a lesser extent than adults but they can still get infected and transmit SARS-CoV-2 to their contacts. Field deployable non-invasive sensitive diagnostic techniques are needed to evaluate the infectivity dynamics of the coronavirus in pediatric populations and guide public health interventions. We evaluated the utility of high-throughput Luminex-based assays applied to saliva samples to quantify IgM, IgA and IgG antibodies against five SARS-CoV-2 spike (S) and nucleocapsid (N) antigens in the context of a contacts and infectivity longitudinal study. We compared the antibody levels obtained in saliva versus serum/plasma samples from a group of children and adults tested weekly by RT-PCR over 35 days and diagnosed as positive (n=58), and a group of children and adults who consistently tested negative over the follow up period (n=61), in the Summer of 2020 in Barcelona, Spain. Antibody levels in saliva samples from individuals with confirmed RT-PCR diagnosis of SARS-CoV-2 infection were significantly higher than in negative individuals and correlated with those measured in sera/plasmas. Higher levels of anti-S IgG were found in asymptomatic individuals that could indicate protection against disease in infected individuals. Higher anti-S IgG and IgM levels in serum/plasma and saliva, respectively, in infected children compared to infected adults could also be related to stronger clinical immunity in them. Among infected children, males had higher levels of saliva IgG to N and RBD than females. Despite overall correlation, individual clustering analysis suggested that responses that may not be detected in blood could be patent in saliva, and vice versa, and therefore that both measurements are complementary. In addition to serum/plasma, measurement of SARS-CoV-2-specific saliva antibodies should be considered as a complementary non-invasive assay to better estimate the percentage of individuals who have experienced coronavirus infection. Saliva antibody detection could allow determining COVID-19 prevalence in pediatric populations, alternative to bleeding or nasal swab, and serological diagnosis following vaccination.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL